Building Upon the STEM Movement

Programming Recommendations for Library Professionals

ANNETTE SHTIVELBAND, LAUREN RIERDEAU, AND ROBERT JAKUBOWSKI

This material is based upon work supported by the National Science Foundation under Grant Number DRL-1421427 for the STAR Library Education Network: Phase 2 program. Any opinions, findings, conclusions, or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the National Science Foundation. Special thanks to Paul Dusenbery, Keliann LaConte, and Anne Holland (all at the Space Science Institute’s National Center for Interactive Learning) for their help in reviewing the manuscript and Amy Koester (the Youth and Family Program Supervisor in the Learning Experiences Department at Skokie Public Library) for her insightful feedback.

A growing body of evidence is showing that youth develop their interests in science, technology, engineering, and mathematics (STEM) through participation in activities across the informal and free-choice learning environments found in libraries. Many libraries have joined a national movement in which libraries deliver STEM programming to youth. Public libraries are a place for STEM learning, and children’s librarians are uniquely positioned to promote a love of STEM learning among youth through such programs. The benefits of STEM programming in public libraries are promising. For example, participating youth can become proficient in key STEM content and skills, such as critical thinking and engineering design processes.

It is critical to youth and community success that these existing STEM programs continue to grow and expand. Public libraries are an ideal location for these programs. They provide a familiar and trusted learning environment for diverse and underserved families. Providing children’s librarians with a “six strand” framework will help guide the successful expansion of these fun and engaging STEM programs. This article provides specific recommendations and resources to help prepare and support librarians feel in adopting and implementing STEM in their programming.

STEM as Part of Lifelong Learning and Community Engagement

Humans are natural scientists at birth, discovering and exploring their world and trying to make sense of it. Yet research demonstrates that by the time youth reach fourth grade, a

Annette Shtivelband is Principal and Founder of Research Evaluation Consulting. Lauren Rierdeau is a Research and Evaluation Associate with Research Evaluation Consulting. Robert Jakubowski is Director of District Performance Monitoring at Denver Public Schools.
third of all students have lost interest in science; and by eighth
grade nearly half of students have deemed science and tech-

tology as irrelevant to their future career plans.8 Students from
under-resourced communities face considerable barriers in
developing STEM skills,9 such as limited school resources and
inadequately prepared teachers. Therefore STEM education
needs to be promoted in public libraries.

In fact, public libraries are becoming a natural and promis-
ning place for all youth to actively engage in free-choice STEM
learning.10 John Baek observed that libraries can become “on-
ramps” to STEM learning by creating environments that wel-
come newcomers to the community.11 Increasingly, libraries’
missions, initiatives, and services reflect their role in improving
scientific literacy and supporting STEM learning and education
standards,12 especially for those underrepresented in STEM
fields.13 Providing high-quality STEM community-learning pro-
grams with high participation can also increase community
support and funding for the library itself. For instance, nearly
all parents (96 percent) expect libraries to be important to their
children’s learning, with major reasons being the availability of
information, resources, and digital media not otherwise acces-
sible at home, programs and classes available, and cultivating
a love of learning in a safe environment.14 Now is a great time
for children’s librarians to create, implement, and improve
informal STEM education programs, as there are significant
funding resources available to support librarians in this pursuit
(for example, the National Science Foundation, the Institute of
Museum and Library Services, and private foundations).

The STEM Learning Movement in Libraries

Results from a national survey conducted by the STAR Library
Education Network (STAR_Net) found that STEM programming
is offered at least somewhat frequently in public libraries.15 Of
the 455 responding librarians, 29 percent offer STEM program-
ming “frequently” (more than once per month) and 26 percent
offer it monthly. When librarians in this study were asked what
age groups they would like to reach with STEM programming,
the following trends were observed: elementary students (396,
89 percent), middle school students (380, 85 percent), pre-
kindergarten (328, 73 percent), and high school students (317,
71 percent).

Increasing numbers of librarians report that they want to see
their patrons not just consume STEM information, but actively
create projects via facilitated activities. The development of
exciting and engaging STEM programs in public libraries aligns
with the broader field of out-of-school-time STEM learning,
which is not restricted to purely academic goals or subjective
learning outcomes. The National Research Council developed a
“six strand” framework to guide these informal STEM programs
and describe what learners might experience:

Strand 1: Interest in Science. Experience excitement, interest,
and motivation to learn about phenomena in the natural and
physical world.

Strand 2: Science Knowledge. Generate, understand, remem-
ber, and use concepts, explanations, arguments, models, and
facts related to science.

Strand 3: Scientific Reasoning. Manipulate, test, explore, pre-
dict, question, observe, and make sense of the natural and
physical world.

Strand 4: Reflection on Science. Reflect on science as a way of
knowing; on processes, concepts, and institutions of science;
and on their own process of learning about phenomena.

Strand 5: Scientific Practice. Participate in scientific activities
and learning practices with others, including using scientific
language and tools.

Strand 6: Identification with Science. Think about themselves
as science learners, and develop an identity as someone who
knows about, uses, and sometimes contributes to science.16

Librarians can use this “strand” approach to cultivate STEM
interest and skills in youth rather than simply being limited to
more narrow academic standards or outcomes. Implementing
these strands can help youth engage and practice their new-
found skills with other youth. They also encourage librarians
to mentor youth and build their STEM identities. This type of
STEM-focused mentoring can help youth picture themselves as
the purveyors of science knowledge and in real careers in STEM
fields. Librarians getting started with the strand approach can
be further supported by the following recommendations, which
are intended to complement the strand model.

Recommendations

1. **Get to Know Children and Mentor.** Develop and maintain
 strong, supportive relationships with children. Library pro-
fessionals can act as mentors and be inspirational to chil-
dren considering pursuing STEM education and careers. To
learn more, use the Techbridge Role Models Matter
Online Training Toolkit at http://www.techbridgegirls.org
/rolemodelsmatter/.

2. **Encourage Diverse Participation.** Emphasize and facilitate
participation by children from groups historically under-
represented in STEM. This includes girls, minorities, those
with disabilities, and economically disadvantaged individu-
als. Libraries already provide a familiar and trusted environ-
ment for underserved audiences, so libraries are an ideal
environment to help such children connect with STEM.

3. **Expand Access.** Go the extra mile whenever possible to
ensure that programs offered are truly accessible to all
children.17 Are they welcoming? Are program promotional
materials provided in the languages commonly spoken in
the community? Can you work with others in the commu-

ity to provide transportation to and from the library? Many
library professionals note the value of meeting children

Winter 2017 • Children and Libraries
where the children are—it is worth the time and effort to go beyond library walls!

4. **Find Support and Get Inspired.** Seek out professional development and support around creating, implementing, and improving STEM education programs. Join STAR Net at http://www.starnetlibraries.org/ to participate in free webinars, access hands-on activities, and interact with other library professionals who offer—or are interested in offering—STEM learning experiences to their patrons.18

5. **Collaborate.** Seek out and collaborate with STEM stakeholders in the community engaged in informal children’s learning.19 This can include community-based organizations such as the Girl Scouts or Boy Scouts, STEM professionals, leaders in the community, and other libraries with STEM programs.

6. **Network.** Reach out to organizations that serve children to establish mutually beneficial partnerships.20 The extra support and resources are shown to increase the effectiveness of STEM programs.

7. **Get Help with Program Evaluation.** Evaluate and track STEM program outcomes, including how your program influences the educational outcomes of the children served. Program evaluators can help support this recommendation. Visit the evaluation section of STAR Net (http://www.starnetlibraries.org/stem-in-libraries/evaluation/) for information about how to get started and access resources from the Center for Advancement of Informal Science Education (http://www.informalscience.org/center-advancement-informal-science-education-caise).

8. **Share Your Program’s Impact.** Share program evaluation results with child-focused community stakeholders to show how STEM programs positively affect your community. Also provide these results to other library professionals to help inspire their own STEM efforts. Your successes matter.

Children’s librarians can support the movement by helping youth actively engage in STEM learning and programming. This engagement can help youth connect with STEM topics, develop STEM aspirations and interests, and consider STEM careers in the future. The “six strand” framework along with the eight recommendations described in this article provide children’s librarians with useful information and resources to start or expand their STEM programs.

While more research is needed to understand the long-term effects of implementing STEM in children’s libraries, this type of informal education institution provides a place that can capture the hearts and minds of today’s youth in STEM learning.

References

3. Ibid., 6.

18. Dusenbery, “STAR Library Education Network.”
20. Garmer, *Rising to the Challenge*.